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Abstract

Flavour analysis is typically performed by human organoleptic analysis, which is often expensive and subjective. A novel ap-

proach using a surface acoustic wave sensing electronic nose (zNoseTM) for flavour analysis was explored to characterise 16 types of

vegetable oils. Fatty acid composition, iodine value, peroxide value, p-anisidine value and free fatty acid analyses were conducted to

determine the quality and characteristics of vegetable oils. The zNoseTM was employed successfully for qualitative distinction of

flavour in different vegetable oils. This is achieved using a visual fragrance pattern, called a VaporPrintTM, derived from the fre-

quency of the SAW detector. VaporPrintTM was shown to be particularly useful for assessing vegetable oil aroma profile in its

entirety. This image is created by transforming the time variable to a radial angle with the beginning and end of the analysis oc-

curring at 0�, or vertical. A Chemometric method, particularly principal component analysis (PCA), was conducted for electronic

nose data processing and identification. Analysis of the score plot of the PCA for the zNoseTM measurement showed that 97% of the

total variance in the data was described by PC 1 and PC 2. The loading plot revealed that five compounds (m; k; n; s; and p) were
important for differentiate the vegetable oils.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Flavour is generally accepted as the most important

sensory characteristic associated with foods. Flavour is

usually divided into the subsets of taste and aroma,

which are perceived in the mouth and the nose, respec-

tively. In general, the aroma of a food consists of many

volatile compounds, only a few of which are sensorially
relevant (Blank, 1997). These compounds define the

nature of a food and its product identity, as well as

contribute to consumer preferences between brands of

products. Human panellists are still the primary method

used for characterisation of olfactory quality. However,

this is a costly process, because a trained panel of ex-

perts can only work for relatively short periods of time.
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The evolution of capillary column gas chromatogra-

phy (GC) and the interfacing of GC with mass spec-

trometry (MS) have resulted in the separation and

identification of numerous volatile compounds in dif-

ferent foods. However, these conventional analytical

methods are not only time-consuming but the results are

often inadequate (Gardner & Bartlett, 1994). Instead,

the relationship between their sensory impacts is still
unclear. Consequently, there is enormous demand for

an electronic instrument that can mimic the human

sense of smell and provide low-cost and rapid sensory

information.

The term ‘electronic nose’ appeared around the late

1980s, when it was specifically used at a conference in

1987 (Gardner, 1987). Gardner and Bartlett (1994)

defined an ‘electronic nose’ as ‘an instrument, which
comprises an array of electronic chemical sensors with

partial specificity and an appropriate pattern recognition
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system, capable of recognizing simple or complex odour’.

An array of sensors simulating the human olfactory re-

sponse has become known as an eNose. An eNose pro-

vides a vectorial image in N -dimensional space (where N
equals the number of sensors), of specific vapour mix-
tures containing possibly 100s of different chemical spe-

cies. An eNose with only a few sensors produces

responses which are not correlated and multiple sensors

respond to the same vapour, e.g., overlap; therefore their

sensitivity is very poor. Besides, drift counteraction is

very difficult since different sensors or different layers of

the sensor drift in their own way. In the chemical sense,

this type of eNose may never be a quantitative mea-
surement instrument.

Recently, a new approach, based upon fast chroma-

tography and a single high quartz acoustic sensor has

become commercially available: zNoseTM. The zNoseTM

solves these problems by simulating a virtual sensor

array containing 100s of orthogonal sensors. Although

only one physical sensor is used, sensor space is defined

mathematically by assigning unique retention time slots
to each sensor. Analysis of any odour is accomplished

by serially polling a virtual sensor array or spectrum of

retention times. The use of a single sensor has the great

advantage of drastically reducing the drift errors.

Moreover, sensitivity is quite high with part per billion

levels being typical for volatile organics in air or water.

Different types of sensors, such as metal oxide semi-

conductors, conducting polymers and surface acoustic
wave (SAW) sensors, have been used (Bartlett, Elliott, &

Gardner, 1997; Hodgins, 1997). The requirement for the

sensors in a electronic nose is that they have a partial

sensitivity, i.e., that they can respond broadly to a range

or class of gases rather that to a specific one, opposite to

the ideal gas sensor, which should respond to only one

gas (Gardner & Bartlett, 1994).

The electronic nose has a wide range of potential
applications in the cosmetic, automotive and food in-

dustries, as well as in environmental pollutant moni-

toring (Mielle, 1996). Using an electronic nose would

allow the odour quality to be followed continuously

from raw material stage right through to the final

product. Continuous monitoring would ensure the early

detection of malodours and ultimately prove cost-effec-

tive (Bartlett et al., 1997).
Many publications report the application of different

prototypes of electronic nose for the odour differentia-

tion of olive oil. Most of the interest originates in the

aromatic volatiles emitted by olive oils as a key char-

acteristic in the quality control of this product (Gua-

darrama, Mendz, Sanz, Saja, & Ros, 2001). A metal

oxide gas, sensor-based, electronic nose has successfully

distinguished between sunflower oil and olive oil (Mar-
tin, Pavon, Cardero, & Pinto, 1999). Guadarrama et al.

(2001) have purposely designed a polymeric sensor array

for detection of olive oil aroma. The array of sensors,
combined with a principal component analysis (PCA),

allow the discrimination of olive oils of different quali-

ties (extra virgin, virgin, ordinary and lampante) (Gua-

darrama, Mendz, Saja, Ros, & Olas, 2000), different

varieties and different geographic origins (Guadarrama
et al., 2001).

Olive oil analyses seem to be a promising application

of the electronic nose. In this study, 16 different types of

vegetable oils were characterised using a SAW sensor-

based electronic nose. The objective of this study was to

obtain an aroma fingerprint of each vegetable oil. This is

a preliminary study to explore an alternative to quality

control testing in the edible oil industry, to replace or
reduce the traditional analytical methods which are

costly, time consuming, involve the use of environmen-

tally unfriendly chemicals, and are largely dependent on

the skills of the analyst.
2. Materials and methods

2.1. Oil samples

Sixteen types of common vegetable oils were pur-

chased from local groceries (canola oil, corn oil, coco-

nut oil, extra virgin olive oil, grape seed oil, hazelnut oil,

olive oil, palm olein, peanut oil, rapeseed oil, rice bran

oil, sunflower oil, soybean oil, sesame oil, safflower oil,

walnut oil). All samples were stored at )20 �C in screw-
cap amber bottles and thawed prior to use. None of

them were subjected to any treatment that might alter

their composition.

2.2. Chemical analysis

The chemical analyses, namely free fatty acid content

(FFA), peroxide value (PV), p-anisidine value (AV), and
iodine value (IV), were carried out by means of AOCS

official methods (methods Ca 5a-40, Cd 8-53, Cd 18-90,

and Cd 1b-87, respectively) (AOCS, 1996). All chemicals

and solvents used were of analytical grade unless

otherwise specified.

The individual fatty acid composition (FAC) of fats

and oils were assayed by gas chromatography (GC)

(Hewlett–Packard model 5890 instrument, Palo Alto,
CA). 0.95 ml of petroleum spirit was added to 50 mg of

sample, followed by 0.05 ml of sodium methoxide

(PORIM, 1995). Samples were transesterified to convert

the fatty acids into relatively volatile methyl ester de-

rivatives (FAME). 0.8 ll of sample was injected into the

instrument, with the inlet temperature at 240 �C. A

capillary column BPX70 was used with the column head

pressure maintained at 145 kPa. Helium (99.95%) with a
flow rate of 1.3 ml/min was used as carrier gas. The oven

temperature was programmed at a rate of 10 �C/min

from 160 �C (equilibrium for 1 min) to 200 �C (equi-
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librium for 2 min), then increased to 240 �C at a rate of

20 �C/min and held for 1 min. The FID detector was

used at a temperature of 275 �C.
2.3. The electronic nose apparatus

The electronic nose (4100 vapour analysis system,

Electronic Sensor Technology, New Bury Park, USA) is

a hand-held portable analyzer. The commercial expres-

sion of this technology, the zNoseTM, is based on fast

chromatography; chemical analysis of any odour is ac-

complished in 10 s by a very fast separation of chemicals

in sampled vapours.
The complete system was housed within a small car-

rying case. It consisted of a sensor head, a support

chassis, and a system controller. The sensor head con-

tained the hardware necessary to separate and detect

materials. The support chassis included a small helium

gas tank, power supply and electronics to run the sys-

tem. The system controller was based on a laptop

computer. The computer analysed the data and pro-
vided a user interface.

The advantages of this zNoseTM are (1) portability (2)

low voltage power source (3) high sensitivity and tenable

specificity (determined by GC column) (4) low cost of

manufacture (solid state sensor and electronics) (5) non-

ionic detection (does not require radioactive ionization

source) and (6) a simple easy-to-use graphical interface

for unskilled inspection personnel.
Almost all the developers of artificial noses have

tried to duplicate the sense of smell by combining

biochemical coatings with silicon chips to produce

arrays of sensors to detect the various components

that make up an aroma. But the success of these so-

called eNoses has been limited by their sheer com-

plexity. To work well, they require enormous numbers

of individual sensors to discern the thousands of ar-
omatic hydrocarbons that waft through our noses very

day (Staples, 2000). Unlike other electronic noses

available in the marketplace, the detector of this

zNoseTM is manufactured from single quartz crystal

without any polymer coatings; hence long term sta-

bility is achieved over a wide temperature range.

The SAW detector is only specific to vapour pressure.

The specificity of the SAW detector is based upon the
temperature of the crystal surface and the vapour pres-

sure characteristics of the condensate itself. At a given

crystal temperature, only those analytes with dew points

below the crystal temperature will condense and be de-

tected. This provides a general method for separating

volatile from non-volatile vapours, based upon the op-

erating temperature of the SAW crystal (Staples, 1998).

The speed of the analysis system was determined by
the sample and analysis times. Typical sampling times

were 1–5 s and analysis times can be 10 s or less.
Chromatographic peaks produced are measured in

milliseconds. The ability to detect short duration peaks

was made possible because the SAW detector is an in-

tegrating GC detector with essentially zero dead volume.

Part per billion (ppb) sensitivity has been achieved with
volatile compounds and part per trillion (ppt) sensitivity

for semi-volatile compounds.

2.4. Electronic nose analysis

Ten grams of each oil sample were weighed into a

septa-sealed screw-cap bottle. After a headspace gen-

eration time of 3 min at 60 �C (in water-bath), the
sample’s vapour was introduced into the electronic

nose. The flow rate (purified helium) was fixed at

30.0 cm3, sampling time 5 s, and the temperature was

programmed from 40 to 160 �C, at a rate of 5 �C/s.
Each cycle of operation included three phases, the

sampling phase, the injection phase and the analysis.

The system analyzed compounds by drawing an air

sample via a pump into the inlet. The sample passed
through the valve where the compounds were absorbed

onto the trap tube. The valve was then rotated to put the

trap in line with the column for injection sequence.

During the injection sequence, the trap was heated

quickly by a short burst of current that vapourized the

adsorbed material. The helium carrier gas then trans-

ported the material down to the capillary column. The

column was heated under computer control and sepa-
rated the compounds. Separation was achieved by

means of an internal coating of a bound liquid phase.

The solubility of a compound in this liquid phase de-

termined the time required for an analyte to travel down

the column.

During the analysis sequence, the materials sequen-

tially exit the column where they land and stick on the

SAW detector. The added mass of the material lowered
the oscillating frequency of the SAW crystal. This fre-

quency was mixed with a reference frequency and the

resulting IF (intermediate frequency) was counted by the

system microprocessor board. The system controller

interpreted the detector response and attempted to

identify and quantify each material. This frequency

shift, caused by an analyte, was characteristic of the

amount of material deposited on the detector and thus
allowed quantification.

2.5. Data analysis

All measurements were duplicated. The results were

expressed as the mean values and standard deviations of

two replications. All data were subjected to analysis of

variance using the SAS Statistical Computer Package
Version 6.12 (SAS Institute, Inc., 1989). Duncan’s

multiple range test was used to compare differences

among means. Significance was defined at P < 0:05.
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2.6. Principal component analysis

There are many ways to analyze data collected by

using an electronic nose. One popular way is using

chemometric methods. Chemometric methods include
procedures for multivariate data analysis. These are in-

creasingly used in problems in which groups need to be

differentiated, especially when large data sets are in-

volved (Larrigaudiere, Lentherie, Puy, & Pinto, 2004).

Chemometric techniques are used to present the data in

an understandable graphical format. They provide quick

answers and allow evaluation of the relationship be-

tween variables and between observations at a glance
(Nicolas, Romain, & Maternova, 2001).

Principal component analysis is a very powerful

multivariate statistics method used to analyze the in-

herent structure of the data. This unsupervised tech-

nique displays an interpretable overview of the main

information in a multidimensional data table. The

principal of PCA is to find the directions in space along

which the distance between data points is the largest.
This can be translated as finding the linear combinations

of the initial variables that contribute most to making

the samples different from each other. The information

carried by the original variables is projected onto a

smaller number of underlying (latent) variables called

principal components. The first principal component

covers as much of the variation in the data as possible.

The second principal component is orthogonal to the
first and covers as much of the remaining variation as

possible, and so on. By plotting the principal compo-

nents, one can view interrelationships between different

variables, and detect and interpret sample patterns,

groupings, similarities or differences.
Table 1

Chemical characteristics of vegetable oils

Sample p-Anisidine value Iodine value (g of I2/100 g oil

CaO 2.06� 0.37h 110.93� 1.39c

CnO 6.17� 0.21c 120.36� 1.71b

CtO 1.00� 0.07i 10.46� 3.22j

EV 7.39� 0.22b 82.01� 0.21h

GsO 8.52� 0.43a 129.45� 0.88a

HtO 7.65� 0.38b 88.83� 1.17g

OeO 5.43� 0.30c;d 80.62� 2.34h

PO 2.96� 0.37g 54.44� 0.04i

PtO 4.22� 0.34f 100.98� 0.27e

RaO 1.82� 0.01h;i 111.84� 1.61c

RiO 5.53� 0.08c;d 95.85� 0.04f

SaO 1.18� 0.39i 88.02� 0.98g

SeO 8.08� 0.48a 105.82� 0.80d

SoO 2.09� 0.11h 125.93� 1.87a

SuO 4.52� 0.95e;f 126.59� 0.53a

WtO 5.15� 0.16d;e 118.41� 4.65b

Each value in Table represents the mean� standard deviation of two

significants (P < 0:05) different.

Abbreviations: CaO canola oil; CnO corn oil; Cto coconut oil; EV extra v

palm oil; PtO peanut oil; RaO rapeseed oil; RiO rice bran oil; SaO high oleic

walnut oil.
In this paper, PCA was carried out on the electronic

nose data to categorize the vegetable oils into different

groups. Unscrambler v.7.6 (CAMO AS, Trondheim,

Norway) software was used for these analyses.
3. Results and discussion

3.1. Chemical analysis

For the purpose of identifying natural fats and as-

certaining their quality, a number of analytical tests are

routinely employed. The test results of a sample of fat
under assessment should fall within the range of estab-

lished constants to confirm its identity. Iodine value (IV)

is a measure of overall unsaturation and is widely used

to characterize oils and fats. It is defined as the number

of grams of iodine absorbed by 100 g of fat. Table 1

shows the IV of the 16 vegetables oils used in this study.

Grape seed oil had the highest IV of 130; followed by

sunflower oil (127) and soybean oil (126). These oils are
a rich source of polyunsaturated fatty acids that possess

health benefits, such as regulating blood cholesterol

levels and lowering elevated blood pressure. In contrast,

coconut oil had the lowest IV of 10.5. The saturated

character of the oil imparts a strong resistance to oxi-

dative rancidity.

The peroxide value (PV), anisidine value (AV) and

free fatty acid (FFA) are good guides to the quality of
oil. Good quality oil should have a PV less than 10 units

before off-flavours are encountered (Rossell, 1994).

From Table 1, all the oils had acceptable levels of PV

which were less than 10 units. Exceptions to this were

extra virgin olive oil and hazelnut oil which had PVs of
) Free fatty acid (%) Peroxide value (meq/kg oil)

0.10� 0.00d;e;f 5.00� 1.40e;f

0.11� 0.01d;e;f 5.97� 0.01e;f

0.41� 0.04a 4.97� 1.38e;f

0.28� 0.00b 14.92� 1.37b

0.11� 0.00d;e;f 1.99� 0.01g

0.12� 0.01d;e;f 22.89� 1.34a

0.22� 0.00c 6.00� 0.00e;f

0.15� 0.02d;e 7.99� 0.01d

0.32� 0.00b 6.99� 1.43d;e

0.04� 0.00g;h 3.97� 0.03f

0.08� 0.01f ;g;h 8.00� 0.01d

0.03� 0.00h 4.96� 1.44e;f

0.45� 0.08a 5.98� 0.04e;f

0.11� 0.01d;e;f 3.98� 0.01f

0.09� 0.00e;f ;g 3.99� 0.00f

0.15� 0.00d 9.97� 0.01c

analyses. Means within each column with different superscripts are

irgin olive oil; GsO grapeseed oil; HtO hazelnut oil; OeO olive oil; PO

safflower oil; SeO sesame oil; SoO soybean oil; SuO sunflower oil; WtO
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14.9 and 22.9, respectively, showing initial development

of oxidative rancidity. These oils may have been on the

shelf for some period of time because the label indicated

that they were approaching the expiry date.

The AV estimates the level of aldehydes, principally
2-alkenals, a secondary break down component of oxi-

dative deterioration present in the oil. The AV test is

particularly useful for abused oils with low PVs such as

frying oils. All the oils use in this study had an accept-

able level of AV (<10 units) (Rossell, 1994), grape seed

oil having the highest value of 8.5; sesame oil ranked

second with 0.44 units less and coconut oil showed the

lowest value of 1.0.
Free fatty acid is a measurement of hydrolytic ran-

cidity, caused by a combination of enzymes and mois-

ture. This is a problem mainly encountered in products

based on lauric oils, such as coconut and palm kernel

oil. The free fatty acids are liberated from the parent

oils, which comprise large amounts of capric, lauric and

myristic acids. These acids have a distinct soapy flavour

and have lower flavour threshold values than the longer
chain fatty acids found in other oils and fats (Rossell,

1994). As shown in Table 1, coconut oil had a quite high

FFA value 0.41, that was between sesame oil (0.45) and

peanut oil (0.32). Other oils were mainly within a FFA

range of 0.1–0.2.

Table 2 shows the FAC of vegetable oils used in this

study. They were all within the range indicated in the

literature (White, 1992). Corn, peanut, olive, sunflower,
sesame, safflower and rice bran oils were of the oleic/li-

noleic group, which contained mainly unsaturated fatty

acids. The saturated fatty acid content was generally less

than 20%, with the highly unsaturated fatty acids and

trisaturated triglycerides being almost entirely absent

from this group. Peanut oil differed from other vegetable

oils as it contained 6% of long-chain saturated fatty

acids that included arachidic (20:0), behenic (22:0), and
lignosceric (24:0) acids. Selective breeds of low erucic

acid rapeseed varieties were characterised by high levels

of oleic acid but this oil was unusual in having sub-

stantial amounts of eicosenoic acid (C20:1) (Orthoefer,

1996).
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3.2. Electronic nose analysis

The flavour of fats and oils is one of the most critical

factors influencing quality. By using a single, uncoated,

high quartz surface acoustic wave resonator electronic

nose, aroma profiles of 16 different vegetable oils were

obtained. This electronic nose was based on the principal

of gas chromatography. By measuring the time required

for each chemical to reach the sensor and the amount it

affects the SAW crystal’s vibration, both the identity
(retention time) and the quantity (amount) of the sub-

stance can be calculated by software incorporated in the



Fig. 2. VaporPrintsTM of different vegetable oils.

Fig. 1. Typical electronic nose chromatogram of vegetable oil sample.
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Fig. 2 (continued).
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instrument. Fig. 1 shows a typical chromatogram for a

vegetable oil sample.

An interesting attribute of this electronic nose was

that it was very user-friendly, since it provided the op-

erator with visually recognizable fragrance patterns.

This image, called VaporPrintTM, is a chemical signature

of an odour. The VaporPrintsTM of 16 different types of

vegetable oils are shown in Fig. 2. The image is a closed
polar plot of the odour amplitude (SAW detector fre-

quency) with radial angles representing sensor time (0

and maximum times are vertical). This image transfers

the olfactory response to a visual response that will

dramatically increase olfactory perception.
As observed from Fig. 2, each vegetable oil contained

the same major compounds and taste testing showed

that few panellists were able to discriminate between

them. The unique nature of this display is subject to the

relative concentrations of the several compounds mak-

ing up the mix. However, for each sample, the relative

distributions of the compounds were fixed (Staples,

1999), and so the resulting VaporPrintTM was unique for
each type of vegetable oil.

Specific data of each vegetable oil are shown in Table

3. There were 20 compounds (a–t, indicating different

retention time) recorded within the analysis time of 0–12

s. Among them, 11 were common compounds for all the



Fig. 2 (continued).
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vegetable oil samples. However, different oils showed

variations in the amounts of every compound. To get an

overall view of the complex data, principal component

analysis was carried out.

3.3. Principal component analysis

Principal component analysis was used to structure

the data matrix. The first aim was to reduce the number

of variables down to important factors only (Schweizer-

Berberich, Vaihinger, & Gopel, 1994). Fig. 3(a) is a

graph of the PCA loadings. Five variables (m; k; n; s; and
p), which had a Euclidean distance from the origin that
was greater than two standard deviations of the distance

of the set were identified. The remaining variables were

considered as unimportant for classification (low load-

ing values along PC 1 and close to origin). By elimi-

nating unimportant parameters, the cost and/or time of

collecting the data can be reduced. Reduction of the

number of variables can lead to improved performance.

Including features that contain irrelevant information
about the measurements can cause problems. Thus, it

becomes important to use only high information de-

scriptors (Eklov, Martensson, & Lundstrom, 1999).

The score plot of PC 1 versus PC 2 from the elec-

tronic nose analysis is presented in Fig. 3(b). The PC 1
and PC 2 factors resulted in a model that described 97%

of the total variance in the data. This percentage was

very high, and this value seemed sufficient to define a

good model, especially for qualitative purposes. It was

observed that PCA allowed easy distinction between the
different vegetable oils.

The different vegetable oils were separated along

the first PC. The first PC described 90% of the peak

variation (Fig. 3(b)) and showed three well defined

groups: coconut, corn, and canola oils with high po-

sitive scores; and peanut, grape seed, soybean, hazel-

nut, walnut and safflower oils with low positive scores;

the rest had high negative scores (sesame, palm olein,
olive, ricebran, rapeseed, sunflower and extra virgin

olive oil) along PC 1. The high positive correlation

between m and PC 1 indicated that the volatile profile

of coconut oil had a higher proportion of m. Corn,

canola, peanut, and grape seed oils contained less

amount of m than did coconut oil, but they contained

more of m than did soybean, hazelnut, walnut and

safflower oils. Other vegetable oils with high negative
scores corresponded to the lowest amount of m. Per-
centage of alteration was organised from right to left

in relation to increasing amount of m. This indicates

that the m variable had a major influence upon the

differentiation of the vegetable oils.



Table 3

Electronic Nose data of various vegetable oilsa

Sample A B C D E F

CaO 30.5� 2.12defg – 139.3� 17.6b 488.2� 90.3b – 2160.2� 132.4bc

CnO 45.8� 5.4d 154.0� 46.6def 203.8� 36.6a 705.3� 60.0a – 3771.3� 480.0a

CtO 136.7� 22.2b 811.8� 170.4a 189.8� 43.7a 695.7� 212.6a – 3855.0� 893.5a

EV 24.2� 6.0defg 82.0� 24.0efg 151.0� 0.0b 128.2� 12.5de – 408.3� 93.7f

GsO 20.5� 3.4defg 137.8� 25.7def 149.8� 42.8b 478.8� 114.1b – 2424.8� 610.6b

HtO 22.0� 3.6defg 188.5� 44.0d 168.2� 16.4ab 437.8� 95.9b – 1885.8� 355.9cd

OeO 28.2� 6.6defg 168.9� 36.9de 68.3� 18.6c 118.7� 32.7de – 420.8� 106.6f

PO 28.7� 8.1defg 297.3� 75.7c 83.0� 19.2dc 76.3� 23.5e – 452.7� 94.0f

PtO 41.0� 10.3defg 140.8� 40.5def 168.8� 44.6ab 512.0� 98.1b – 2301.3� 273.7b

RaO 12.2� 3.4fg 30.5� 6.7g 30.3� 4.5d 56.2� 12.2e – 244.2� 42.6f

RiO 36.7� 7.4defg 47.0� 14.3g 64.2� 16.6cd 109.3� 33.9de – 436.2� 107.1f

SaO 8.83� 2.5g 72.2� 16.0fg 82.2� 20.4c 260.3� 49.1c – 1033.3� 244.3e

SeO 214.3� 61.3a 380.5� 83.9b 61.0� 14.1cd 59.3� 13.5e 381.8� 60.6 300.8� 71.8f

SoO 15.5� 2.4efg – 73.3� 14.9c 286.2� 56.6c – 1581.7� 150.7d

SuO 12.7� 2.7fg – – 34.2� 6.5e – 229.0� 26.5f

WtO 69.7� 3.9c 74.3� 12.7fg 83.5� 13.3c 195.0� 47.0cd – 1176.7� 277.4e

Sample G H I J K L M

CaO – 500.7� 148.5bc 1944.8� 310.4d – 8739.8� 1817.7cd 2555.7� 336.7a 20320.5� 1599.4b

CnO – 762.8� 163.5a 3583.2� 421.7b – 15059.5� 2023b 5241.7� 808.8b 21030.5� 2554.9b

CtO – 563.5� 129.0b 4677.0� 1144.6a – 18099.0� 4619.9a – 30958.2� 8143.5a

EV 2386.7� 94.6a 517.3� 45.6bc 460.2� 122.3g 447.7� 69.3 2431.3� 353.8g – 1791.3� 279.8e

GsO – 326.8� 74.8de 2667.8� 749.1c – 9070.4� 2388.8c – 20772.0� 6014.8b

HtO – 416.3� 98.6cd 2081.7� 243.1d – 6697.7� 698.5de – 14797.5� 1689.7cd

OeO 311.3� 61.3b – 395.2� 103.6g – 1304.5� 317.7g – 2715.0� 690.4e

PO 316.0� 57.7b – 374.8� 61.4g – 1180.7� 327.3g – 2334.2� 600.9e

PtO – 357.8� 57.2de 2741.8� 331.6c – 8893.0� 757.7c – 20672.3� 1878.3b

RaO 160.8� 49.0c – 320.2� 78.7g – 1015.0� 249.4g – 2344.8� 656.4e

RiO 159.8� 33.8c – 426.7� 66.5g – 1259.2� 147.9g – 2422.3� 175.04e

SaO – 181.2� 34.0f 1467.5� 170.2g – 4405.0� 551.6f – 12171.2� 1413.4d

SeO – – 299.5� 42.7ef – 502.2� 45.0g – 1158.5� 127.9e

SoO – 239.5� 40.4ef 1880.8� 235.1g – 5880.7� 882.8ef – 17668.5� 2651.3bc

SuO 158.8� 20.3c – 310.0� 26.4de – 983.5� 132.2g – 2202.3� 315.9e

WtO – – 1351.5� 142.5f – 4212.2� 664.7f – 11759.5� 2078.6d

Sample N O P Q R S T

CaO 16251.7� 2842.5a 1610.8� 336.8a 6779.8� 1801.1b – 4836.0� 1042.9a 15288.3� 3297.3a 712.5� 195.3c

CnO 13955.7� 3076.8b – 7700.3� 1486.7a – 1958.7� 526.5b 10707.5� 1752.9b 210.3� 60.7e

CtO 16382.8� 3080.0a – 8072.2� 1490.3a – 963.0� 203.7c 11052.5� 2378.3b 503.2� 59.9cde

EV 6253.7� 752.8de 206.2� 48.2b 2577.0� 350.8de – 2266.5� 600.0b 1977.0� 202.8ghi 706.5� 132.3c

GsO 8162.0� 2255.4c – 3754.0� 947.8c – 860.8� 200.9c 5997.6� 1504.1c 462.6� 116.1cde

HtO 6003.2� 434.3cde 41.5� 12.0c 2980.3� 209.4cde – 678.2� 167.1cde 4489.5� 393.5de 4144.5� 849.3a

OeO 1524.5� 331.1ghi 30.0� 9.4c 773.3� 201.1ghi 611.6� 113.4a 150.5� 22.5f 1555.5� 317.3ghi 392.3� 79.1de

PO 1369.7� 367.9hi 44.7� 7.8c 639.8� 149.7hi 15.6� 3.0b 273.5� 49.0ef 1043.8� 290.1hi 309.8� 57.6de

PtO 7904.8� 553.5cd – 3436.7� 246.9cd – 648.5� 70.1cde 5417.7� 506.2cd 320.2� 82.7de

RaO 967.5� 224.7i 46.2� 6.0c 469.0� 91.7i – 294.0� 53.5ef 762.3� 151.9i 327.8� 62.0de

RiO 1377.2� 142.9i 29.3� 6.8c 577.0� 127.3i – 334.5� 31.6def 922.2� 132.9i 311.2� 56.6de
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A further separation among the vegetable oils was

dominated by PC 2 (Fig. 3(b)) which described 7% of the

peak variation. The corresponding loading plot revealed

this separation to be related mainly to variables n and s.
Percentage of alteration was organised from origin to
high negative loading along PC 2 in relation to in-

creasing amount of n and s. The high negative score of

canola oil (Fig. 3(b)) was determined by the highest

amount of s and second highest amount of n among all

vegetable oils. Extra virgin olive oil contained signifi-

cantly higher amounts of n than did sesame, palm olein,

olive, ricebran, rapeseed, and sunflower oils that sepa-

rated it out from of the cluster (Fig. 3(b)).
For those oils that overlap and form clusters on the

PCA (walnut and safflower oils; sesame, palm olein,

olive, ricebran, rapeseed and sunflower oils) there was

no significant difference in the amount of the five influ-

encing variables (m; k; n; s; p).
4. Conclusion

In this paper, we have presented the results of an

evaluation of the application of the zNoseTM for char-

acterisation of vegetable oils. The ability of the zNoseTM

to qualitatively distinguish among 16 common vegetable

oils was demonstrated. This indicated that the instru-

ment had adequate selectivity and sensitivity to perform

flavour identification in vegetable oils. The fats and oil
industry are now able to see and measure the chemistry

of odour of vegetable oils with the electronic nose. This

electronic nose may potentially fulfil a real need in the

fats and oils industry for objective, rapid quality-moni-

toring sampling systems that can characterize odour

with a midrange precision. Thus it is important to de-

termine whether the production system is running to

specification without requiring human sensory panel-
lists, or lengthy analytical methods and interpretation of

the data.

Using an electronic nose would allow the odour

quality of vegetable oils to be followed continuously

from the raw material stage right through to the final

product. It would be useful to incorporate electronic

noses in the food industry to determine whether the

deodorization process has been successfully completed.
Besides that, with the standard vapour image of the

fresh oil produced by the zNoseTM it is possible to

compare and monitor the chemical composition and

quality of the entire production process to allow detec-

tion of rancidity or off-flavour at early stages, to im-

prove cost-effectiveness. Authenticity is an issue of

major concern in the food industry. With the charac-

teristic aroma fingerprint of each vegetable oil, it is
possible to detect any adulteration and allow adulter-

ated oil to be viewed and recognized as part of a pre-

viously learned image set.
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